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ABSTRACT

If we deal initially only with single situa-
tions, monoconfidence intervals can be either
required only to be weak, to have proper confi-
dence when averaged over all configurations, or to
be strong, when they must have the appropriate
properties conditionally for each configuration.
(We assume location-and-scale invariance
throughout both for situations and confidence
intervals.) When we consider a plot involving
several situations, three kinds of polyconfidence
intervals seem worth mention: (a) doubly-strong,
whose properties hold separately for each combina-
tion of a situation and a configuration, (b) weak,
whose properties hold on average for each situa-
tion, (c) singly strong, where the properties
hold, first on average for each situation and,
second, for each configuration and one situation.
These notions, as well as that of balance in a
conservative sense, are explored in the framework

of configurations.

Attention then shifts to finding such
polyconfidence intervals, using configural

polysampling* as the principal tool.

*See Technical Report No. 185, by Pregibon and

Tukey for general background.




INTRODUCTION .

. ———

1. The one-situation Framework

|
We begin with the classic case of a single location and !
|
|

scale situation, whereby

Yy = (Yllyzl oo -~lyn)
is, for a simple situation, a set of n iid quantities or,
for a compound situation, a set of n evid quantities, whose
underlying distributions are in either case completely

specified except for location and scale changes.

Here "iid" stands for independently and identically

distributed and "evid" stands for "an exchangeable version

of independently distributed”™. The latter means that

Yyr¥gqreeasY, 2re an unknown, equiprobable permutation of
21125000002, which are independent with z, distributed |
according to fi(z). The one wild Gaussian situation is a .
classical example., (Still more complex sorts of situation

have not, as yet, been introduced.)

We find it somewhere between convenient and essential

to work with the order statistic form of the y's, which

could be termed "o0iid” in the simple case and "ovid™ in the

Prepared In part in connection with research at Prince-
ton University, sponsored by the U. S. Army Research
Office (Durham).
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compound case. So we take Yy < Yo £ oo < Y, as certain.

Our concern is with estimating a location u, which we
assume is defined as part of each situation. We require
location-and-scale invariance, both of the situation and for
the estimate, and thus find it natural to work with
location-and-scale configurations, conveniently parameter-

ized (for any choice of a and b with 1 < a < b < n) by

y; = rtscy for all other i

Here in view of the ordering, we must have

c; < 0 all i € a

0 < c, €1 all i with a < i < b

i
1« c; all i > b

When doing numerical calculations it seems desirable to take

a near n/4 and b near 3n/4.

We call the (n-2)-component vector = cl, c2;"°()'
...(),cn, the configuration (more precisely but rarely the
(a,b)-location-and-scale-configuration). Here the ()'s rem-
ind us, this once only, of the omission of coordinates for

i = aand i = b,

The configuration, and the two anchors, Ya and Yi e

together
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¢ determine uniquely, and are uniquely determineé by

the observed y's.
¢ are all that is known to us

¢ are the basis on which we are to construct estimates,
confidence intervals, etc. Because of the invariance
requirement, we can only use the anchors and Yy

linearly. That is, only numbers of the form
ya + t(yb = Ya)

can be used for estimates, confidencz2 interval end
points, and the like, where t will usually be a func-

tion of the configuration c.

2. Monoconfidence Intervals

In more graphic terms, we have two anchors, Vs and Yy
and a picture of the configuration including o where €,
would otherwise be and 1 where p would otherwise be. The
configuration is pure shape; the anchors are for location
and scale. We look at the picture and decide where in the
picture we wish to put a point (an estimate, a confidence
interval endpoint, etc.) If this is to be at t in the c-
pictures the corresponding y-like value is Yy * t(yb = ya).
Our requirement of location-and-scale invariance does not
allow us to even think about the actual values of Y, and Yy

while choosing t.

A pair of functions of configuration L(c), U(c) define

April 16, 1981
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an [exact, conservative] p% monoconficdence interval for p

for a given situation Q, if

Pron{r + L(c)s < p<r + U(c)s}

is [equal to, greater than or equal to] p/100. Here Pron{}
applies equally to each and every set of underlying distri-
butions in the situation Q. (These differ only by
location-and-scale changes. If equality or inequality holds

for one instance of the situation, it holds for all.)

We can easily ask a little more. The ends, r + sL(c)
and r + sU(c), of our monocinfidence interval divide (-oo,
oo) into three intervals. We may also want some sort of
balance. The natural requirement is that neither should

have an excessive chance of containing p, that both

100-p
Pron{p £ r + sl(c)} < 53

and

Pron{r + sUite) | < l%%%B

wWhen these "end conditions"” hold we will speak of a balanced
monoconfidence interval. Such a monoconfidence interval

provides both two-sided and one-sided confidence statements.

We know that there can be many different kinds of mono-
confidence intervals, for a given situation Q. Fisher ()
introduced the idea of requiring behavior of estimates, etc.

to hold separately for each recognizable distinction among
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the data possibilities considered. 1In our set-up, this
would mean that our confidence should hold conditionally

upon the configuration ¢, so that

- Pron{r + L{c)s < p<r + U{c)slc}

is {equal to, greater than or equal to] p/100. We will call

a monoconfidence limit fulfilling such a condition a strong '

monoconfidence interval.

Such a requirement greatly reduces flexibility in

choosing confidence intervals. More precisely:

¢ it rules out many wasteful choices for monoconfidence

intervals, and

¢ in special circumstances (e.g. Cox 1%..) keeps us

from making swaps of probability between recognizably

different bodies of data which could lead to apparent
overall gain. By restricting ourselves to strong mono-
confidence intervals, we are immune to challenges of
the form "but look at your configuration, you know what
happens under situation Q0 with such confiqurations"”.

As a result, challenges will have to be to the situa-

tion itself.

* the con-con function *

For any real t, the value of
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Pron{p S tle) =6 (&)

Qc

depends only on the indicated arguments, Q and c. As gen-
erating a conditional confidence statement based on the

configuration, it is mnemonic to call G () the con-con

Qc
function, given Q and c.

Every strong monoconfidence interval under situation 9

arises by satisfying

[}
A
Q.

Goe (L (e))

Goe (U(w) => d + 155

for a suitable d, as is easy to see.

The minimal (i.e., not purely shortenable) strong mono-
confidence intervals, given Q and c arise from equality in
these two inequalities. Moreover, there is a minimal bal~-

anced strong monoconfidence interval given Q. This is found

by solving
. loo-p
Cget™ CIH =205

100+
Gpe (Ule)) = Z555F

3. Qualitative Discussion of Polyconfidence Intervals:

Doubly-strong and Weak Instances

Since challenge is now restricted to challenging Q, it
is both natural and important to consider at least several

Q's. For a qualitative discussion, we do not need to say
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just how many we consider, so let {Q} be a collection of
situations. Notice, that we may as well call a collection

of situations a plot.

Our concern is then with kinds of polyconfidence situa-

tions as seen in the light of a specified plot.
* doubly-strong polyconficdence *

The strongest requirement we could make is that of a

doubly~-strong polyconfidence interval, for which we require

Probo{r + sL(c) < pu< ¢+ sU(c)/cl T%ﬁ

for all Q and c. So long as we restrict ourselves to Q's in
a particular plot, we can hardly ask very much more than
this. (Indeed, it may well be that we are asking so much

that we would be willing to take less.)

We can try to ask a little more, however, namely bal-

ance. This requires that, for all c and all Q in the plot

II, both
100-p
Goc (L)) £ =355
and
_ 100-p _ 100+p
Goc(U(e)) 2 1 = =555 200

Lf we define a pair of plot con-cons by

April 16, 1981




S_qe = ™in{Sy (0)1Q in [T}

Gfﬁc = max{G c(t)IQ in II}

Q

then a balanced doubly strong confidence interval is one for

which

so that the minimal (tightest) such is given by

_ ~-1 1100-p]
L(e) = G ie1 200 |
. ~=1 1100-p|
u(e) =G qc1"200 |

For a particular p and []J, it is possible that there are

no solutions to these equations. This could happen if the
con-cons GQc(t) for individual Q's differed too much. (This
can't happen for plots containing a finite number of Q's.)

* weak polyconfidence *

A doubly strong balanced polyconfidence interval is
immune to any challenge that does not challenge the plot [I.

Accordingly, it will tend to be a long interval. If we ask

less, we might shorten it, perhaps considerably on average.

Reducing the size of the plot would surely do this, but
suppose this is not desired. We could give up all trace of i

the "strong®” requirement, and ask only that

April 16, 1981
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Pron{r + sL(c) <+ p<r + sU(c) = T%ﬁ

for each Q in [I and on the average over its ¢'s. This would
make the interval (r + sL(c), r + sU(c) at least a weak
polyconfidence interval. There are such intervals, the
sign-test-based non-parametric interval for the median being
a balanced one. Note that this particular weak polyconfi-
dence interval will not be strong for the same, nominal
value of p, at least if the pure Gaussian situation is in
the plot. This is so because preserving conditional proba-
bilities for the Gaussian situation requires using limits of

the form
Y + t* st
where
2 1 -2
(s*)° = =T S(Yi -y)
Something quite different from limits of the form

Yo * tlyy — v,)

There are many weak polyconfidence intervals and a dis-
cussion of how to choose one could indeed be lengthy. We
note that such nonparametric procedures as the sign test and
the (one-sample) Wilcoxon test offer very clearly specified

examples.

4. A Compromise: Singly-Strong Polyconfidence Intervals

April 16, 1981
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It is natural to believe that:

¢ doubly-strong polyconfidence intervals are wastefully

long,

¢ weak polyconfidence intervals are too subject to

challenge, in terms like "look at that configuration!"”,

¢ we need a compromise, where there is at least a reply
to such challenges, It is clear what one such comprom-

ise would be.
If we knew two things, namely

Pron{r + sL(c) < p<r+st(e)} > T%H all Q in II

and

Pron*{r + sL(c) < nu<r+ su(c)le} > T%ﬁ all c, one Q*

Then the answer to "but look at your c" could be "in Q* that
wouldn't matter®. This deflects the challenge from the
knowable configuration to the unknowable situation. For
some this would be good enough; for others not. (The latter
would have to move to or toward a doubly-strong polyconfi-

dence interval.)
* criss-crossing *

If Ll(c),Ul(c) defines a strong (exact or conservative)
monoconfidence interval for QO* (in [I), and Lz(c),uz(c)

defines a weak (exact conservative) polyconfidence interval

April 16, 1981
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over [I, then L(c), U(c), where
L(c) = min{L, (c) Ly ]
U(c) = max{Ul(C).Uz(C)}

will be a singly~-strong (conservative) polyconfidence inter-

val since
Pron*{r + sL(c) < p<r + sU(c)lcl
B
> Pron*{r + sLl(c) Cp<r+ sUl(c)Ic} > 160
for all ¢ and
Pron{r + sL(c) < p<r + sU(c)}
i -1
> Pron{r + sly(c) S mr+ sUy(a)l 2 155
for all Q in [I.

* curtailment *

Even if (L,(c),U;(c)) is not the same as (L,(c) ,Uy(c)),

we may have
*
Prob, {r + sLy(c) Cmgr+ sUy(a)) > T%ﬁ
for some c's. For such c¢'s we can surely take
L(c) = L, (c)

U(c) = Uz(c)

reserving the "min® and "max" operations for where they are
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really needed. Such a curtailed criss-cross is easily
implemented, once we are able to evaluate the probability

above, which equals

Gouc(Up(€)) = Gy (Ly(e))

Now we have started economizing, we can continue.
* patching *

How can we tighten our polyconfidence interval further?

One easy way starts with Lz(c) and Uz(c), and looks at
GQ*C(Lz(c)) and GQ*c(Uz(c))

If these differ by at least p/100, we are content with
L(c) = Lz(c)
U(c) = Uz(c)

for all such ¢, and turn our attention to other c¢'s, where

= - 5

GQ*C(Uz(C)) GQ*C(LZ(C)) < 160

We now look at some one of these other c's, and either
decrease Lz(c) or increase Uz(c) until either starts (on L

or U) showing possible changed values

* *
Gguc(Ua(@)) = Gou (Ly(e)) = 157

or

April 16, 1981
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1 - GgaglUp(e)) = GyuolLy(e))

If the former happens first, we stop there, else we con-

tinue, preserving the last equality until we have

£ 100-
Sgue(La(e)) = Syp5t

100+p

*
Sgrc(Ua(€)) = 353

Then, relabelling Lé(c) as L(c), and U;(c) as U(c) we have

the desired values of L(c), U(c) for that particular c.

* tuning *

We are not prepared to offer any meaningful comments
about the optimality of such a L(c), U(c) pair as a singly-

strong polyconfidence interval. There is a very real possi-

bility that we can do better, but we shall avoid this tuning
problen.

* examples *

Let us take n=10,u = population median,

p = 1002/1024 ~98%, and [] = all reasonable simple situa-

tions.

With our conventions,

(y1. yn) = |r -

where

April 16, 1981
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Yo=Yy Y)Y,
Yp~¥a Y7V,

Lz(c) = -

Y=Yy
Yp~Y,

Uz(c) =

is a 1002/1024 exact weak polyconfidence interval over [].

Similarly, for Q* = Gaussian,
(y - t*s*, y + t*s*)

where

s =2 Llos v, -

and t* is the upper 11/1024 percent point of students t on
19 degrees of freedom (t* = 2,495), is a strong monoconfi-

dence interval at Q*,

The criss-cross L(c¢), U(c), easily calculated for any
configuration, will be a singly~strong polyconfidence inter-~
val over all of [I. Almost certainly such a choice will be
quite wasteful, since (s*)2 is easily enlarged by the
extreme values of Y, OF Y. This will be only slightly less
true if we curtail the criss-cross, or, probably'if we

replace it by a patching.
It might well be reasonable to study the results of

¢ using a sign~-test or Wilcoxon strong polyconfidence

intervals for the median as Lz(c), Uz(c)

April 16, 1981
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¢ taking Q* as an intermediate situation, say a simrle

sl acu,

¢ taking Ll(c), Ll(c) as the strong monoconficence

intervel on Q* based on the wh-biweight;

® considering all three of criss-cross, curtailment,

and patching.

5. The Position

Wwe thus have at least three qualities of polyconfidence

intervals,
¢ doubly-strong (easy to find; "wastecful" to some)

¢ strong (allows an answer to the c~-challenge, examples

easy, tuning not likely to be easy)

¢ weak (many alternatives, tuning not trivial, but

probably feasible)

each of which may or may not further include the requirement
of belance. 1If we had examples of all of these for one or

more plots, each user could take his/her choice.

Thus we ought to turn to the gquestion of finding such

intervals,

April 16, 1981
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THE CALCULATIONS

5. The Set-up

We look toward configural polysempling as the basis for

our practical work. We should have them:

¢ a small plot, consisting of perhaps 2 to 7 situations

S1 52, Yoo 1S for each of which a center, p, is
’

g mex

specified.

¢ 2 polysample of configurations {c} = c(1), ..., c(m)

(note that each c{i) is either a (n-2)-entry vector

array or a n-entry vector array with two fixed entries)

¢ weights qu appropriate for use when c(j) is to be

used as a configuration sampled for Sq.

¢ con-con functions, Gqc(t) applicable for these qg's

and c's.

The character and building of all these pieces, except |
the con~-con function, is discussed in Technical Report 185
(Pregibon and Tukey, 1981) and Technicel Report 191 (Rell
and Pregibon, 1981) (see also Rogers and Relles, 1973 for
formulas in the case 8=1, n=b). The basic results depend on
averages, for fixed c, represented first as integrations
over r and s and then on integration over a rectangle (where '
Gaussian quadrature formulas apply each way). If IQc(r,s,t)

is the indicator function
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IQc(r,st) =1, if p < ¥, t(yb - ya) = r + st
= 0, else
which depends on q (where Q = Sq) and c then
Goe (B) = Pron{p £ r+ st} = ave,. {I(r,sjt)}

and this can be evaluated for selected values of t in a way

similar to the other integral evaluations.

7. Doubly-strong Polyconfidence Intervals

To find the monimal balanced 95% polyconfidence inter-
val, for each of the confiqurations of the polysample, we

have merely to:

% evaluate the con-con functions Gqc(t) for each q in
the plot, each c in the polysample, and well-selected

values of t,

¢ calculate the + and - con-con functions from
G_Hc(t) = min (Gqc(t)/sq in I
G+nc(t) = max (Gqc(t)/sq in I
the former for higher values of t, the latter for lower

values of t,

® solve the equations
G+HC'2°5%
G-ﬂC(t)-97°5%

for each ¢ in the polysample.

April 16, 1981
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¢ take these values of t 2s L(c) and U(c)

¢ assert, for these configurations (ané any others to

be treated later), that the interval in question is
from

r+ sb(c) =y, + L(c)(y, ~vy,)
to

r + sU(c) = ) s U(c) (yb - ya)

If we want to know how this polyconfidence intervals
performs, we average what we see at the given polysamples
using the appropriate weights. Thus the average lengths of
our confidence intervals, which we do NOT think is likely to

be a good criterion to consider would be found as an esti-

mate of
aveqc aver'S (U(c) - L(c)) (s)
ave(q)c(ave(qc)r’s(U(c)-L(c))(s)) = ave(q)c(U(c)-L(c)) ave(qc)ss)

perhaps as

1 &=
S 2 wqc(U(c) L(c))sqc

gc ¢

where

S__ = ave

gc (ge) 18}

was itself estimated by Gaussian quadrature.

Notice that there are g-max different such average

lengths.
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Thus we need not expect too much difficulty (a) in
finding L(c) and U(c) and (b) in evaluating simple proper-

ties.

8. Tuning Weak Monoconfidence Intervals for Average Lengths

Before we attempt to tune more complicated structures,
it is well to consider tuning weak monoconfidence intervals
using the same dubious criterion of average length. Here we

wish to choose L(c) and U(c) to satisfy

Q
ave {Goe (U(e)) = Sp (Lie))} 2 rhy

while making

0 0 _ 0 1
aze {(U(c) - L(c))EQc] = aze {U(c)ch} - aze{L(c)sQC}

small. (Note that 'ase' means what might also be written
'aveq' indicating averaging over the indicated part of a
selected instance of the situation; averaging that would
include explicit use of weights, were this necessary, -- as
it will be in the polysampling case.) If we have, say, 500
configurations on which we are working, we have a con-

strained optimum problem with 1000 variables. Direct

approaches are likely to be inefficient.

We will ordinarily find GQc(t) ogive-shaped, and its
derivative, ch(t), unimodal. We will shortly have occasion

to be concerned with two inverses of ch(t) which we can

April 16, 1981
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define, in general, by
hac(u): the algebraically smallest t with g, (t) = u,
h;c(u): the algebraically largest t with ch(t) = u,

So long at least as Yoc (t) is continuous, these will be
well-defined on 0 < u £ max {ch} (though they might be
discontinuous, since ch() might not be unimodal). If we

write

M
[}

1 Ech(U(c))

M
[}

EchG (L(c))

Qc

chQc

M
L}

2b u(c)

5, =2

4 L(c)

chch

where the b incorporate the needed weights, if any, for

Qc
the 4 sums that we will use to replace the averages we used

to state the problem, we will want to

minimize 23 - 54

subject to Sl - 52 ngﬁ

which is naturally attacked with a Lagrange multiplier, x,

by minimizing
53 = 54 -)(Sl = 52)

and then choosing )\ to satisfy the constraint. Since 53 and

g, are functions of the {U(c)]} above -~ and Sz and 24 of the

1
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{L(c)} -- we can extremelize

53 = A and 54 - X3

1 2

separately (unless this leads to some U(c) < the corresponé-

ing L(c).) This leads to differentiating wirt. U(c), to
chch - )chch(U(c)) =0
whence we may take
U(e) = hl (5, /\
(C =5 QC SQC ‘)
similarly, we may take
L(c) = hoc (Sge/N)

what remains is to empirically choose \ to make

Q
aze {GQC(U(C)) - GQC(L(C))!

equal to the desired p/100,

9. Other Criteria

We also want to be able to tune our monoconfidence
intervals for other criteria, which deserve some discussion

in their own right.

We all recognize some form of confidence interval as
the best we can do. And few of us want a 99.9999% interval,
Thus we have come to accept a meaningful but small (say 5%

or 1%) chance that our confidence interval will not cover
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the center at which it is aimed. Should we then pay too
much attention to a small chance that the interval is very

long?

When the interval is too long, it is unhelpful, but we {
know it., Can this be nearly as important as missing its
target? It would seem that the answer should be a rousing
"no®! If we are going to allow 5% misses, then we ought, we

very well arque, accept 10% overlong intervals. So we seek

related criteria.

Two natural, but possibly naive, choices are:

¢ the 90% point of the length of the confidence inter-

vals, and

¢ the average length of the shortest 90% of all confi-

dence intervals.

If we are doing direct sampling, either of these can be used
simply and directly, just by sorting the empirical interval

lengths.,

If we are working with configurations, we have to add a
loop. For what can be reasonably calculated at a configura-
tion is the chance that an interval -- cr a configurations
-~ should be shorter than a prescribed length. If we
prescribe a length, moderately extensive computation gives
us a % less than this length. Then we have to adjust the

length, and iterate. If we must, we must. |
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But let us think about our criteria with a little more
care. Perhaps the last two assess, separately, two aspects
that we might like to assess together. Suppose that we took

9 1 8
1o ave {90% shortest lengths} + 1 (90% point)

This is the average of a saturating function
= length, below the bend at the 90% length
= 90% length, else

There are possible virtues to such a combination. Let K be

a trial value for the 90% length, then we would estimate
ave {lengthllength < K}
Prob {length < K}
which is equivalent to estimating
ave {K - lengthlilength < K}
Prob {length < K}

where we still must iterate on K to make the probability =

to p/100. The criterion will then take the value
K - ave{K - lengthllength < K} = K - K ave{l - lsL;?-Ehllength £ K}

where the last factor is a relatively slowly changing func-

tion of K.

10. Iterating for the Select Criterion

Let us put
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€
AQc(u) = a:e

s,
|(1 u)I given s £ U

c
B,.(u) = prob {s < u}
Qc r,s

so that the probability that the interval length be less

than K is, for one c,

B | K |
Qc {U(c) - L(a)l

so that we must eventually control

| K |

2boe Boc 10T = CioTI

by changing K. For K fixed, however, we desire to minimize

K=-(K times the following) and hence, for fixed K, to

maximize
| K |
2boe Poc |TTE) =TT
since
i = length _ , _ (U(c) - L(c))s _ 9 = s
K K K/(U(c) - L(c))

The Lagrangian form to be extremal is now

» K l
oo Poe (TTev=T(erl ~ N (¥bgclac(U(e)) = 3by Gy (L (e))

whose derivatives wirt U(c), and L(c) with

aoc(u) = 3%- A5 (u)

are, less the common factor ch
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-a ! £ = -
QcluU(c)-L(c) | (u(c)-L(C))2

= N (U (),

and

+a | K - .
Qclu(e)-L(c) | (U(c)-L(c)) 2

- Mg (L(e))

If these vanish, so does their difference, hence

ch(U(c)) = ch(L(c))
as tacitly before, giving

U(c) = bf _(g._ (L(c)

c) oc ch ()
and
+

U(c) = L(c) = AQC(QQC(QQC(L(C)) - L(c) = fQC(L(C))

so that

K
(L(e))?

K
ch(L(C))

Ao (L(c)) = 30e

(fQ

which should be soluble for L(c), given \ possibly with some
effort. Once this is done for all ¢ in our sample of confi-

gurations, we will again want to check

2 | K |
Prob {length < K} 2bye B 1T =—LTeT|

and adjust K to bring this to the desired value.

The process is appreciably more complicated than for
the average length criterion, but apparently not unbearably

8o,
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11, Tuning Weak Polyconfidence Intervals

Suppose we want a weak polyconfidence interval for a
plot consisting of two situations, A and Z. We now have, if
we stick to the simple case of the average length criterion,

eight 3's to consider:

2, =3b

ACGAC(U(C))

Al

2 £ szcGAc

A2 (L(c))

2 2b

(U(c))

zZ1 ZCGZC

2 SbAc(L(c()

z2

2 = %b, s U(c)
A3 Ac 73

2 = 3b, s L(c)
A4 Ac A
b = 3b,. s U(c)
23 Zc e
b3 = 3b, s L(c)
Z4 Zc 7c

and we desire to minimize, jointly,

2, =32

A3 A4

and

2, -2

23 zZ4

subject to
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-3, 2> p/l00

v

p/100

This clearly calls for one pair (d,B) of shadow prices and
one pair of Lagrange multipliers, all of which leave us

minimizing
diZp3 = 3p0) + B85 = 250 = M3y = 5p)) - N5y - 5,)

which can again be done separately for two parts, here

minimizing

d%y3 *+ §5;3 - -\ - NMIg
and maximizing

d%h4 * 8§34 - MIa2 - N3

which lead, on differentiating w.r.t. U(c) and L{(c),

respectively, to
0 = dbySpc * §bpcSac = MabacTnc (L () = Ngbycdze (U L))
and

0 = dby Spc + §byShe = MabacTac (L(E)) = \gbgc3pc (L L))

If we now write
Na = Mo

N, = N1-8)
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both right~hand pairs of terms can be written in terms of
-1
ebAchc(t) + (l-e)chch(t) N hec(t)
whose inverses can be written as
ht (u) nd  hL_(u)
ec't g ec g
so that we have
0 =db, 5, + ¥b, 35, - \2l(c))
Ac"Ac Zc " Zc LA - T

- = -1
IR qucsAc M EchsZc 3 hhec(L(c))

and
i) & nt |oacAc * §bscSzc
éc A
L(c) = ho dbAcsAc * Eb2c52c
ec A

where © and \ must now be varied jointly to ensure
SbAcGAc(U(c)) = SbAcGAc(L(c)) 2 p/100

SbZCGZC(U(c)) - 3b (L(c)) > p/100

ZCGZC

Outside of this loop, we must vary d/B (we will simplify
matters by forcing, say, d + E = 2) in order to get the

right joint minimum for the two average lengths.

Plausibly what we may seek at this point is
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A Z

ave{polyconfidence length} - _ave{polyconfidence lengths}
A A Z YA

min ave{monoconfidence length} min ave{monoconfidence length}

thus maximizing a polyefficiency defined by

polyefficiency

min{monocefficiencies}

- _ J]A-minimum average length|2
A - monoefficiency = | actual minimum length |

|Z-minimum average length|2
] actual minimum length |

Z - monoefficiency

12, Comment

The calculations are clearly getting moderately com-
plex. They will get somewhat worse for other criteria or

more situations. But they seem likely to be feasible.

13, Tuning Singly-strong Confidence Intervals

If we have also fixed a situation Q*, at which we want
our polyconfidence internal to be a strong monoconfidence

interval, what we have done is to require

Goc(Ule)) = GQC(L(C)) 2 p/100

for each c.

We expect the usual situation. For some ¢ (given, say,
d/8, N, and @ ) this condition will be satisfied, for others

not. For the others we must involve Q in the choice of U({(c)

and L(c).

April 16, 1981




e e

S s . s Saadd

e ety e TNW W e e

- 30 - -

We can easily parametrize the possibilities in terms of
L(c). Given a sufficiently small L(c) (for given

d/ % ,\ , and @ ), there will be:

¢ the smallest U(c) that satisfies the condition

displayed above,

¢ a minimum cost U(c), depending upon d/¥,\, and theta.

consider the larger of these, and its total cost, at ¢ of
the (L(c),U(c) pair, as given in terms of d, E '\ + andéd 6.
Now choose L(c) to minimize this cost and U(c) to be the

corresponding larger value.

When this has been done for all ¢, we are ready to vary

d, 8 ,\ and € to obtain the desired result.

Again the process has become somewhat more complicated,

but is pruwably still feasible.
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10. 1Iterating for the Select Criterion

Let us put
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